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ABSTRACT

Final Report: The Human Microbiome as a Multipurpose Biomarker

Report Title

The human microbiome comprises the communities of microbes carried in and on the body in health and disease, including trillions of 
bacteria, viruses, archaea, and fungi per individual. These microbiota, which defend us against pathogens and help digest our food, are 
personalized among individuals. The specific microbes present at any one habitat within an individual become relatively stable during the 
first several years of life, but change in as-yet-uncharacterized ways as a host is exposed to new environments, diets, locations, and social 
contacts. The microbial composition of a given individual might thus be linked to his genetic background or early life history, for example, 
while the metabolism of those microbes would reveal more about his recent medical history or diet. The goals of this project are thus 1) to 
assess the structure of any microbial habitat and its potential for identifiability (including dietary history, medical history, biometric, 
demographics or environmental exposures) and 2) to determine the relationships and interactions between the microbial communities within 
a host.
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CCREPE's implementation as an R/Bioconductor package (see http://huttenhower.sph.harvard.edu/ccrepe) has been carried 
out in collaboration with Weingart Informatics, an independent software development contractor in San Francisco.  This has 
allowed academic development and validation of the algorithm to be carried out efficiently by students and postdoctoral fellows, 
while Dr. Weingart has provided industry-quality code, unit testing, packaging, documentation, and distribution.  He has begun 
work on a broader software platform for human microbiome analysis, the bioBakery virtual environment, which may be a target 
for future industry partnership in the lab.



60287-MA: The human microbiome as a multipurpose biomarker 
Associate Professor Curtis Huttenhower, Department of Biostatistics, Harvard School of Public Health 

Our final technical report for this project includes 1) a method for uniquely identifying human 
individuals by way of their personal microbial communities using metagenomic codes, 2) a novel 
Bayesian method (CCREPE) to identify robust correlation and co-exclusion patterns in 
compositional data, 3) a generative Bayesian model, SparseDOSSA, for generating microbial 
community data with known covariation and association patterns, and 4) the PICRUSt method 
and software for metagenome inference from taxonomic profiles using ancestral state 
reconstruction. Open-source software implementations for all four main results are available at 
http://huttenhower.sph.harvard.edu/idability, http://huttenhower.sph.harvard.edu/ccrepe, 
http://huttenhower.sph.harvard.edu/sparsedossa, and http://huttenhower.sph.harvard.edu/picrust, 
respectively, with additional material at http://huttenhower.sph.harvard.edu/galaxy and 
http://bitbucket.org/biobakery. Our final publication list includes 14 manuscripts (PMIDs 
25964341, 24629344, 23013615, 26157614, 25303518, 22699609, 22699610, 26418763, 
25587358, 22904687, 22698087, 24843156, 23975157, and 22807668) and two currently in 
preparation (CCREPE and SparseDOSSA). 

Problem Statement 
The human microbiome comprises the communities of microbes carried in and on the body in 
health and disease, including trillions of bacteria, viruses, archaea, and fungi per individual. 
These microbiota, which defend us against pathogens and help digest our food,  are personalized 
among individuals. The specific microbes present at any one habitat within an individual  
become relatively stable during the first several years of life, but change in as-yet-
uncharacterized ways as a host is exposed to new environments, diets, locations, and social 
contacts. The microbial composition of a given individual might thus be linked to his genetic 
background or early life history, for example, while the metabolism of those microbes would 
reveal more about his recent medical history or diet. The goals of this project are thus 1) to 
assess the structure of any microbial habitat and its potential for identifiability (including dietary 
history, medical history, biometric, demographics or environmental exposures) and 2) to 
determine the relationships and interactions between the microbial communities within a host. 

Results Summary 
Identifying personal microbiomes using metagenomic codes 
Large-scale investigations of the human microbiome have revealed great variability in the body 
site-specific taxonomic composition of organisms across healthy individuals. However, it was 
not previously known whether this variability is sufficiently nonrandom to uniquely identify 
individuals within a population, nor whether it is also sufficiently stable to continue uniquely 
identifying individuals over long time periods (weeks, months, or years). We answered these 
questions by developing a hitting set-based coding algorithm, which defined body site-specific 
metagenomic codes: sets of microbial taxa or genes prioritized to uniquely and stably identify 
individuals. Codes capturing strain variation in clade-specific marker genes were able to 
distinguish among hundreds of individuals at an initial sampling time point. In comparisons with 
follow-up samples collected 30-300 days later, ∼30% of individuals could still be uniquely 
pinpointed using metagenomic codes from a typical body site. 
Codes based on the gut microbiome were exceptionally stable and pinpointed >80% of 
individuals. The failure of a code to match its owner at a later time point was largely explained 



by the loss of specific microbial strains (at current limits of detection) and was only weakly 
associated with the length of the sampling interval. In addition to highlighting patterns of 
temporal variation in the ecology of the human microbiome, this work demonstrated the 
feasibility of microbiome-based identifiability for the first time, a result with important ethical 
implications for microbiome study design. 
In order to construct metagenomic codes that are stable over time, we first identified properties 
of individual microbial features (OTUs, genes, and genomic regions) that lead to their repeated 
detection over multiple sampling time points (Fig. 1). Features with low prevalence in the 
population tended to disappear with the passage of time, making them poor choices for 
maximizing code stability; abundant features were more likely to be stable over time. Trends in 
prevalence, abundance, and persistence were conserved across different body sites and across 
features assayed by different technologies, and they were also consistent regardless of whether 
features were defined as 16S rRNA gene-based OTUs, metagenomic marker gene sequences, or 
one-kilobase genomic window abundances (genomic regions). 

 
Figure 1: An overview of uniquely identifiable metagenomic code derivation and validation. A) An example of 
three individuals and their metagenomic features (represented by capital letters) are shown. For each individual, a 
subset of features is highlighted that is unique among the three individuals. We refer to these sets as metagenomic 
codes. B) The same three individuals reevaluated after weeks to months. Individual 1’s microbiome has remained 
stable, and his code still uniquely identifies him among the population (a true positive). Individual 2 has lost 
metagenomic feature C, and his code no longer identifies him (a false negative). Individual 3 has lost feature B and 
gained feature C. Individual 3 is still a true positive with respect to his own code, but also matches individual 2’s 
code (a false positive). C) Illustration of the four metagenomic feature types considered in our work: OTUs, species, 
kilobase windows from reference genomes (kbwindows), and species-specific marker genes (markers). 

To construct codes for each sample and feature type, we divided all features into three categories 
within each individual: (i) confidently detected, (ii) confidently absent, and (iii) ambiguous. 
These categories were defined by a pair of cutoffs that varied by feature type. For example, an 
OTU was considered confidently detected if its relative abundance met or exceeded 0.001 
(0.1%), confidently absent if its relative abundance was below 10-5 (0.001%), and ambiguous 
otherwise. We defined the features comprising the metagenomic code of an individual to have 
two critical properties: (i) all code features were confidently detected in that individual at the 
first sampling time point, and (ii) at least one code feature was confidently absent in each other 
individual in the population (thus making their ensemble unique to the encoded individual). 
To construct a code for an individual X, we first ranked the confidently-detected features of X in 
order of increasing “abundance gap,” which we defined as the abundance of the feature in X 
minus its next-highest observed abundance in the population. This ranking scheme prioritized the 
inclusion of abundant features, which were initially determined to be most stable, and penalized 
the inclusion of features ambiguously detected in other individuals, which would be more likely 



to produce false positives at future time points. We then added features from this ranked list to a 
putative code, at each step “flagging” individuals in the population for whom the next-highest 
ranked feature was confidently absent (features that would fail to flag new individuals contribute 
no new information and are skipped). The algorithm terminates when (i) all other individuals 
have been flagged (i.e. the putative code contains at least one feature that is confidently absent in 
each other individual, thus making it a unique code) or (ii) we run out of ranked features before 
flagging all other individuals, in which case we have failed to construct a code for X. Optionally, 
after assembling a unique code (case i), we can continue adding features to the code until a 
desired minimum size is reached (7 features in our evaluations). A minimum code size adds 
robustness to noise and, effectively, error correction to avoid false positives. 
Our coding algorithm was able to construct unique codes for almost all individuals by focusing 
on metagenomically-unique marker genes. These codes were stable in roughly half of the 
population between the first and second sampling time points (True Positive Rate, TPR = 50%), 
with relatively low false positive rates. The isolated stool body site was an exception, having a 
TPR closer to 80%. False negatives were due largely to the disappearance of one or more of the 
microbial taxa contributing metagenomic features to the code. Notably, the likelihood of a false 
negative did not appear to depend sensitively on the time sampling interval, as a few weeks to 
nearly a year were roughly equivalent. Codes based on gene-level features consistently 
outperformed OTU-based codes. Relative to gene-level codes, OTU-level codes not only 
depended upon more taxa, but also required the inclusion of less-abundant taxa (which tended to 
be less stable) to achieve uniqueness. On the other hand, gene-level codes were able to 
incorporate multiple distinguishing features from the most abundant taxa of an individual, and 
were therefore more robust to temporal variation. Comparing metagenomic codes to a validation 
cohort of previously-unseen subjects suggested that codes would tend to remain unique in 
populations of order-of-magnitude hundreds of individuals. 
The results of this study were published in PNAS (PMID 25964341) in collaboration with 
Brendan Bohannon (University of Oregon) and Katherine Lemon (Forsyth Institute). It was 
presented at the 2015 Dana-Farber Cancer Institute Biostatistics and Computational Biology 
seminar series, the 2015 BioC Bioconductor annual meeting, the 2015 Canadian Institute for 
Health Research International Speaker seminar series, the 2015 Simons Foundation Symposium 
on Genomics in Single Cells and Microbiomes, the 2015 Harvard CATALYST Understanding 
Biomarker Science workshop, the 2015 Channing Division of Network Medicine Theodore L. 
Badger Lecture series, the 2014 University of Oregon Institute for Theoretical Sciences seminar 
series, the 2014 Statistical and Applied Mathematical Sciences Institute Bioinformatics Opening 
Workshop, the 2014 META Center for Systems Biology symposium, the 2014 Dalhousie 
University Centre for Comparative Genomics and Evolutionary Bioinformatics and Microbiome 
User Group, the 2014 Keystone Symposium on Exploiting and Understanding Chemical 
Biotransformations in the Human Microbiome, and the 2014 Intelligent Systems for Molecular 
Biology (ISMB) conference. The project was led by research associate Dr. Eric Franzosa. 
Co-occurrence and Co-exclusion Patterns in the Human Microbiome 
CCREPE (Compositionality Corrected by REnormalization and PErmutation) has evolved since 
its inception during this project from an ad hoc approach to a posteriori investigation of 
associations in microbial community data (initially named ReBoot) to a generalizable Bayesian 
method for any composition data. Briefly, typical correlation measures such as Pearson or 
Spearman correlation produce false positives (referred to as spurious correlations) when applied 



to compositional data, i.e. measurements in which all values sum to a fixed constant. 
Proportions, in which fractions sum to 1 or 100%, are a common example; these arise frequently 
in ecology, since for example microbial taxa are only measurable as counts or as fractions of 
total community composition. CCREPE corrects the nominal statistical significance of putative 
correlations in such data in order to report only the significance of association above and beyond 
that expected due to compositionality alone. 
CCREPE's Bayesian model (Fig. 2) assumes that a single composition, 𝐂! = (𝐶!,!,… ,𝐶!,!)!, is 
generated by the normalization of a basis, 𝐗! = (𝑋!,!,… ,𝑋!,!)!. That is, 

𝐂! =
𝐗!
𝑋!,!!

 

We also assume that samples are i.i.d., such that 𝐗! ∼
!!" 𝐹!(⋅) and therefore 𝐂! ∼

!!" 𝐹!(⋅). Note that 
𝐹!(⋅)  is determined from 𝐹!(⋅)  by the transformation from 𝐗!  to 𝐂!  via normalization. The 
covariance and correlation structures of the basis are denoted by 𝚺! = [𝜎!,!!!] and 𝐑! = [𝜌!,!!!], 
respectively, and the covariance and correlation of the composition by 𝚺! = [𝜎!,!!!]  and 
𝐑! = 𝜌!,!!! . Thus, in order to determine which compositional correlations are significant in the 
basis, we assess the null hypothesis that 𝜌!,!!! = 0 (or, equivalently, 𝜎!,!!! = 0) for features j and 
j', remembering that in real data only the composition and not the basis is observed. 

 
Given that 𝐗 ∼ 𝐹!(⋅) with covariance 𝚺! = 𝜎!,!!!  and expectation 𝛍! , a Taylor expansion 
around 𝛍!  yields the approximate covariance for 𝑔(𝐗) = 𝐗

!!!
, denoted by 𝚺! = [𝜎!,!!!] . 

Defining 𝛚 = !!,!
!!,!!

,… , !!,!
!!,!!

, this gives: 

𝚺! =
1
𝜇!,!!

!

(𝐈−𝛚𝟏!)𝚺(𝐈−𝛚𝟏!)! 

allowing us to predict the behavior of the compositional correlation from the basis parameters 
that generate it. In particular, for two features in the case where 𝜎!,!!! = 0 and 𝑗 ≠ 𝑗′, then: 

𝜎!,!!! =
1
𝜇!,!!

! 𝜇!,!𝜇!,!!

∑
!
𝜇!,!

! ∑
!
𝜎!,!! −

𝜇!,!
𝜇!,!!

𝜎!,!!!! −
𝜇!,!!
𝜇!,!!

𝜎!,!!  

Thus the covariance 𝜎!,!!! will be large and positive if both features take up a large proportion of 
the composition but their variability is small relative to the total variability in the basis. 
Conversely, covariance will be large and negative if both features take up a large portion of the 

Figure 2: Plate diagram for the CCREPE Bayesian model of 
significant associations in compositional data. Unobserved 
correlations Σ in an underlying basis R are generated from mean 
μ and standard deviation σ , yielding a distribution of true 
abundances that is assumed to be lognormal (LN). Only the 
normalized compositions C are observed. 



composition and a large portion of the total variability, as this arrangement reduces the 
composition (approximately) to one of two parts. Finally, compositional covariance will also be 
large and negative if one feature takes up a small portion of the composition with large 
variability but the other takes up a large portion with small variability, because the feature with 
large variability forces the other to move in the opposite direction after normalization (Fig. 3). 

 
Figure 3: Deriving conditions under which spurious correlations emerge. Three examples that capture the 
causes of spurious correlation (A) in compositional data between (B) two features of high abundance and high 
proportional variance, (C) two features of high abundance and low proportional variance, and (D) one feature of 
high abundance, one low, and high proportional variance. Either high mean μor standard deviation σis sufficient, 
the latter surprisingly so even in cases where feature means are low. 

Over the course of developing CCREPE, we also derived a novel ecological similarity measure 
to use with it, the NC- or N-dimensional Checkerboard score. The NC-score extends the 
checkerboard score from binary presence-absence variables to ordinal values by re-defining 
patterns of co-variation and co-exclusion as follows: 
1. We define a co-variation pattern as a 2x2 submatrix of the form 

{ 𝑎 𝑏
𝑐 𝑑  | a < b, c < d }, 

or its converse 

{ 𝑎 𝑏
𝑐 𝑑  | a > b, c > d }, 

where a, b, c, d ∈ [0, n-1]. Biologically, this pattern describes two microbes that co-vary in 
concert between two samples, i.e. are positively associated. 
2. Similarly, we define a co-exclusion pattern as a 2x2 submatrix of the form 

{ 𝑎 𝑏
𝑐 𝑑  | a > b, a > c, d > c, d > b }, 

or its converse 

{ 𝑎 𝑏
𝑐 𝑑  | a < b, a < c, d < c, d < b }, 

where a, b, c, d ∈ [0, n-1]. Biologically, this pattern describes two microbes with different 
relative abundances between two samples, i.e. negatively associated. In the special binary case of 
n = 2, these two patterns collapse to the standard checkerboard unit. Otherwise, NC-score is 
equivalent to Kendall’s tau calculated on “binned” abundances rather than ranks, which we 
perform by default using thresholds of “zero” (relative abundance = 0), “very low” (> 0, < 1E-4), 
“low” (> 1E-4, < .01), “medium” (> .01, < .25), and “high” (> .25, < 1). 



Finally, we have applied CCREPE to two relevant microbial datasets, approximately 5,500 16S 
rRNA gene taxonomic profiles derived from the Human Microbiome Project as published in 
2012, and to approximately 2,000 metagenomic species-level taxonomic profiles derived from 
newly sequenced metagenomes spanning the same subjects analyzed using MetaPhlAn2. The 
former, published as PMID 22807668, included a global network of 3,005 significant co-
occurrence and co-exclusion relationships between 197 clades occurring throughout the human 
microbiome. This network revealed strong niche specialization, with most microbial associations 
occurring within body sites and a number of accompanying inter-body site relationships. 
Microbial communities within the oropharynx grouped into three distinct habitats, which 
themselves showed no direct influence on the composition of the gut microbiota. Conversely, 
niches such as the vagina demonstrated little to no decomposition into region-specific 
interactions. Diverse mechanisms underlay individual interactions, with some such as the co-
exclusion of Porphyromonaceae family members and Streptococcus in the subgingival plaque 
supported by known biochemical dependencies. These differences varied among broad 
phylogenetic groups as well, with the Bacilli and Fusobacteria, for example, both enriched for 
exclusion of taxa from other clades. Comparing phylogenetic versus functional similarities 
among bacteria, dominant commensal taxa (such as Prevotellaceae and Bacteroides in the gut) 
often competed, while potential pathogens (e.g. Treponema and Prevotella in the dental plaque) 
are more likely to co-occur in complementary niches. 
With the latest Bayesian model for CCREPE, we assessed species-level profiles from ~2,000 
metagenomes (Fig. 4). This yielded a much smaller network of 104 within- and between-site 
associations, almost all within-site, spanning 115 site-specific clades. Overall, these recapitulated 
the basic characteristics of earlier 16S-based networks, including little between-site interaction 
and few "hub" microbes (scale-freeness). We also observed a cluster of co-variation in stool, 
which contained microbes known to be involved in the health of the gut microbiome, including 
Escherichia coli and several clades IV and XIVa Clostridia. These new methods will allow the 
derivation of significant co-variation networks from high-dimensional compositional data, 
particularly the detection of species and, eventually, sub-species level ecological interactions 
within the human microbiome and other microbial communities. 

 
The manuscript describing CCREPE is currently in preparation by lead Ph.D. student Emma 
Schwager, and during the course of the project period it has included contributions from software 
developer Dr. George Weingart and M.S. student Craig Bielski. CCREPE has been presented at 
the 2014 Intelligent Systems for Molecular Biology (ISMB) conference, the 2014 Program in 
Quantitative Genomics conference, the 2014 Statistical and Applied Mathematical Sciences 

Figure 4: Species-level microbial 
associations significant by CCREPE in 
~2,000 HMP1-II metagenomes. Since 
publication of approximately 700 body-
wide metagenomes during the Human 
Microbiome Project, an additional ~1,300 
metagenomes have been sequenced 
spanning 100 individuals at three time 
points each. CCREPE was run on the 
residuals of a random effects model 
accounting for repeated measures to 
identify significant associations between 
taxa within and across body sites. 



Institute Program on Beyond Bioinformatics: Statistical and Mathematical Challenges, the 2014 
University of Oregon Institute for Theoretical Sciences seminar series, the 2014 META Center 
for Systems Biology symposium, the 2014 University of Washington Genome Sciences seminar 
series, the 2014 Human Microbiome Project consortium meeting, the 2013 Weizmann Institute 
Systems Biology program seminar, the 2013 Channing Department of Network Medicine 
seminar series, the 2013 Harvard Medical School Systems Biology program seminar series, the 
2013 Tufts University Computer Science department colloquium, the 2013 Human Microbiome 
Science: Vision for the Future NIH workshop, the 2013 General Meeting of the American 
Society of Microbiology, the 2013 Harvard School of Public Health Bioinformatics Core forum, 
the 2013 Los Alamos National Laboratory seminar series, and the  2012 Harvard Medical School 
Systems Biology program. In addition, CCREPE has been an analysis methodology in four 
published studies (PMIDs 22807668, 24629344, 24843156, 22699609) and the American Gut 
study currently in review. 
A Hierarchical Probabilistic Model of Microbial Community Structure: Sparse Data 
Observations for the Simulation of Synthetic Abundances (sparseDOSSA) 
While many statistical methods have been developed to facilitate analysis of metagenomic data, 
to date there have been few efforts to benchmark these methods in an accurate and systematic 
manner - a critical challenge to the developers of these methods as well as the methods’ end-
users. To address this and to provide a generalizable model of microbial community profiles, we 
developed SparseDOSSA (Sparse Data Observations for the Simulation of Synthetic 
Abundances): a hierarchical model of microbial ecological population structure. SparseDOSSA 
is capable of simulating realistic metagenomic data with known correlation structures and thus 
provides a gold standard to enable benchmarking of statistical metagenomics methods. 
SparseDOSSA’s model captures the marginal distribution of each microbial feature as a 
truncated, zero-inflated log-normal distribution, with parameters derived in turn from a parent 
log-normal distribution (Fig. 5). The model can be effectively fit to reference microbial datasets 
in order to parameterize their microbes and communities, or to simulate synthetic datasets of 
similar population structure (including the optional addition of known correlation structures). We 
demonstrated SparseDOSSA’s utility in three applications: 1) accurately modeling microbial 
community diversity profiles using a small number of fit parameters trained on baseline (healthy) 
human microbial communities and communities from inflammatory bowel disease (IBD) 
patients; 2) generating synthetic communities with simulated environmental and ecological 
correlation structures; and 3) recapitulating the results of an earlier clustering analysis describing 
microbial response to diet type in mice. These applications comprise the most common 
downstream analyses applied in metagenomic sequencing experiments, and thus demonstrate 
SparseDOSSA’s utility as a general-purpose aid for evaluating statistical methods in microbial 
community analysis. 



 
We validated SparseDOSSA’s ability to accurately fit and simulate microbial communities with 
ecological patterns recapitulating those in a variety of real community types, by comparing the 
distribution of microbe-specific means and beta-diversity profile in simulated data to the real 
data that are used to train the model. This ultimately allows us and others to quantitatively 
benchmark analysis methods for microbiome features, their ecological properties, and their 
associations with environment and host phenotypes. We first assessed the degree to which 
SparseDOSSA’s fitted two-layer model captured the marginal variation of microbial community 
taxonomic profiling data across all microbes. To that end, we first compared the trend of rank 
average abundance of all microbes in two real datasets (Morgan Genome Bio 2012, 250 samples 
and 158 genera, and HMP Nature 2012, 16S posterior fornix subset) to those of simulated 
datasets generated by the model fitted on these real datasets. The fitting was repeated using both 
the naïve and fully Bayesian fitting procedures, with simulated datasets generated based on 
SparseDOSSA’s two-layer model setting parameters to be the estimates from the fitting step and 
with the same dimension as the real dataset. This verified the model’s ability to capture the 
variation pattern of marginal microbial community profiles and the validity of our naive fitting 
method as a fast approximation of the full Bayesian fitting method (Fig. 6). 

 
Figure 6: The SparseDOSSA model accurately captures feature mean distributions and beta diversities of 
microbial communities. A) Rank abundances of log-transformed feature specific means for data from Morgan et al 

Figure 5: SparseDOSSA provides a generative hierarchical Bayesian model 
for microbial community taxonomic profiles. This comprises a two-layer 
structure in which each layer is controlled by a lognormal distribution. 
Individual microbial features (second layer) are assumed to be drawn from a 
lognormal distribution with marginal mean µi and standard deviation σi. In 
combination with feature-specific sparsity (i.e. expected fraction of zeros) pi, Yi,j 
is generated as the number of reads of feature i in sample j. To generate the 
overall distribution of the population of microbial features, β,β' are parameters 
connecting the marginal mean parameters to the marginal standard deviation 
parameters and marginal sparsities, respectively, and µ0, s0 are the mean and 
standard deviation of the overall lognormal distribution (first layer). Rectangles 
denote replication of the model within the rectangle, i.e. plate structure, with the 
number of replication is labeled at the bottom-right corner. 



and from SparseDOSSA simulated data based on this, using naive estimates and the pointwise 95% posterior 
interval derived from fully Bayesian fitting of the same model. B) MDS analysis on Bray-Curtis distances of 
taxonomic profiles from 190 vaginal microbial communities in the Human Microbiome Project split into a training 
subset (95 samples) for model fitting, a validation set (95 samples), and 95 simulated samples from the resulting 
SparseDOSSA model (all containing 172 microbial features). 

When used as a model for simulating realistic microbial community data, one major function of 
SparseDOSSA is to impose a known "phenotypic response" in synthetic microbial features. This 
is done by capturing the overall diversity pattern of a community and subsequently also inducing 
artificial correlations between features and sample properties such as environment or phenotype. 
We verified the model's ability to include detectable categorical feature-metadata associations in 
its simulated output by artificially associating nine randomly chosen features and a binary 
environmental metadatum with 250 samples and the Morgan et al dataset as template. All 
synthetic associations were detected among the 17 features of greatest effect size, with no false 
negatives. Interestingly, several apparent false positives (i.e. features that are spuriously 
differentially abundant) occur at this level of significance, caused not by the SparseDOSSA 
model but by the known effects of compositionality (i.e. relative abundance normalization) in 
ecological data. Simulated associations with a synthetic continuous metadatum were similarly 
successful, including the model's ability to correctly capture sparsity patterns in microbial 
features (Fig. 7). 

 
Figure 7: Simulating categorical or continuously valued population variability among microbial community 
samples. A) Differences of mean relative abundances between two classes of a simulated binary metadatum based 
on Morgan et al, along with the empirical inter-quatile range of all features as contrasted between metadatum levels. 
B) Correlation of one feature into which an association to a continuously variable metadatum has been spiked (Y 
axis) with that metadatum's value (X axis). 

The SparseDOSSA manuscript is currently under review as written by project lead Ph.D. student 
Boyu Ren and research scientist Dr. Eric Franzosa, with contributions over the course of the 
project from undergraduate research assistants Joseph Moon and Yiren Lu. SparseDOSSA has 
been presented at the 2015 Dana-Farber Cancer Institute Biostatistics and Computational 
Biology seminar series and at the 2014 Statistical and Applied Mathematical Sciences Institute 
Program on Beyond Bioinformatics. 
  



Inferring microbial community metagenomes from marker gene sequences 
Profiling phylogenetic marker genes, such as the 16S rRNA gene, is a key tool for studies of 
microbial communities but does not provide direct evidence of a community’s functional 
capabilities. We developed PICRUSt (Phylogenetic Investigation of Communities by 
Reconstruction of Unobserved States), a computational approach to predict the functional 
composition of a metagenome using marker gene data and a database of reference genomes. 
PICRUSt uses an extended ancestral-state reconstruction algorithm to predict which gene 
families are present and then combines gene families to estimate the composite metagenome. 
Using 16S information alone, PICRUSt recaptures key findings from the Human Microbiome 
Project and accurately predicts the abundance of gene families in host-associated and 
environmental communities, with quantifiable uncertainty. Phylogeny and function are thus 
sufficiently linked that this ‘predictive metagenomic’ approach has begun to provide useful 
insights into the thousands of uncultivated microbial communities for which only marker gene 
surveys are currently available (Fig. 8). 

 
We developed PICRUSt to predict the functional composition of a microbial community’s 
metagenome from its 16S profile. This is a two-step process. In the initial 'gene content 
inference' step, gene content is precomputed for each organism in a reference phylogenetic tree. 
This reconstructs a table of predicted gene family abundances for each organism (tip) in the 16S-
based phylogeny. Because this step is independent of any particular microbial community 
sample, it is pre-calculated only once. The subsequent 'metagenome inference' step combines the 
resulting gene content predictions for all microbial taxa with the relative abundance of 16S 
rRNA genes in one or more microbial community samples, corrected for expected 16S rRNA 
gene copy number, to generate the expected abundances of gene families in the entire 
community. 
The value of PICRUSt depends on the accuracy of its predicted metagenomes from marker gene 
samples and the corresponding ability to recapitulate findings from metagenomic studies. The 
performance of PICRUSt was first evaluated using the set of 530 HMP samples that were 
analyzed using both 16S rRNA gene and shotgun metagenome sequencing. We treated HMP 
metagenomic samples as a reference and calculating the correlation of PICRUSt predictions from 
paired 16S samples across 6,885 resulting orthologous groups. Predictions had high agreement 
with metagenome sample abundances across all body sites (Spearman r=0.82, p<0.001). As a 
targeted example, we also tested PICRUSt’s accuracy in specifically predicting the abundance of 

Figure 8: The PICRUSt workflow. PICRUSt 
is composed of two high-level workflows: 
gene content inference (top) and metagenome 
inference (bottom). Beginning with a reference 
phylogeny and a gene content table, gene 
content inference predicts genes for each taxon 
with unknown content, including marker gene 
copy. Metagenome inference takes a 
taxonomic profile, where taxa correspond to 
tips in the reference tree, as well as the copy 
number of the marker gene in each taxon and 
its gene content and outputs a metagenome 
table on a per-sample basis. 



glycosaminoglycan (GAG) degradation functions, which are more abundant in the gut than 
elsewhere in the body. Using the same differential enrichment analysis on both PICRUSt and 
metagenomic data yielded identical rankings across body sites and very similar quantitative 
results, suggesting that PICRUSt predictions can be used to infer biologically meaningful 
differences in functional abundance from 16S surveys even in the absence of comprehensive 
metagenomic sequencing. 
Next, we then evaluated the prediction accuracy of PICRUSt in metagenomic samples from a 
broader range of habitats including mammalian guts, soils from diverse geographic locations, 
and a phylogenetically complex hypersaline mat community (Fig. 9). These habitats represent 
more challenging validations than the human microbiome, as they have not generally been 
targeted for intensive reference genome sequencing. Because PICRUSt benefits from reference 
genomes that are phylogenetically similar to those represented in a community, this evaluation 
allowed us to quantify the impact of increasing dissimilarity between reference genomes and the 
metagenome. 

 
To characterize this effect, we developed the Nearest Sequenced Taxon Index (NSTI) to quantify 
the availability of nearby genome representatives for each microbiome sample. NSTI is the sum 
of phylogenetic distances for each organism in the taxonomic profile to its nearest sequenced 
reference genome, measured in terms of substitutions per site in the marker (i.e. 16S rRNA) gene 
and weighted by the frequency of that organism in the profile. As expected, NSTI values were 
greatest for the phylogenetically diverse hypersaline mat microbiome (mean NSTI=0.23 +/- 0.07 
s.d.), least for the well-covered HMP samples (mean NSTI=0.03 +/- 0.02 s.d.), mid-range for the 
soils (mean NSTI=0.17 +/- 0.02 s.d.) and varied for the mammals (mean NSTI=0.14 +/- 0.06 
s.d.). Also as expected, the accuracy of PICRUSt in general decreased with increasing NSTI 
across all samples (Spearman r=-0.4, p< 0.001) and within each microbiome type (Spearman r=-
0.25 to -0.82, p<0.05). For a subset of mammal gut samples (NSTI<0.05) and all of the soil 
samples that we tested, PICRUSt produced accurate metagenome predictions (Spearman r=0.72 
and 0.81, respectively, both p<0.001). Both the mammal and hypersaline metagenomes were 
shallowly sequenced at a depth expected to be insufficient to fully sample the underlying 
community’s genomic composition, thus likely causing the accuracy of PICRUSt to appear 
artificially lower for these communities. Although the lower accuracy on the hypersaline 

Figure 9: PICRUSt accuracy across various 
environmental microbiomes. Prediction accuracy for paired 
16S rRNA marker gene surveys and shotgun metagenomes 
(y-axis) are plotted against the availability of reference 
genomes as summarized by the Nearest Sequenced Taxon 
Index (NSTI; x-axis). Accuracy is summarized using the 
Spearman correlation between the relative abundance of gene 
copy number predicted from 16S data using PICRUSt versus 
the relative abundance observed in the sequenced shotgun 
metagenome. In the absence of large differences in 
metagenomic sequencing depth (see text), relatively well-
characterized environments, such as the human gut, have low 
NSTI values and can be predicted accurately from 16S 
surveys. Conversely, environments containing much 
unexplored diversity (e.g. phyla with few or no sequenced 
genomes), such as the Guerrero Negro hypersaline microbial 
mats, tended to have high NSTI values. 



microbial mats community (Spearman r =0.25, p<0.001) confirms that PICRUSt must be applied 
with caution to the most novel and diverse communities, the ability to calculate NSTI values 
within PICRUSt from 16S data allows users to determine whether their samples are tractable for 
PICRUSt prediction prior to running an analysis. Moreover, the evaluation results verify that 
PICRUSt provides useful functional predictions for a broad range of environments beyond the 
well-studied human microbiome. 
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